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Figure 10: QUEST visualization manager animation of SLP �elds during the life of the cyclone track shown inFigure 9.6 ConclusionCurrently, scientists have access to large reposito-ries of observational and model data, but lack highlevel analysis tools with which to investigate the data.Rather than being able to issue queries such as \Showme motion sequences that include hurricane (cycloneformation or temperature gradient patterns) that de-veloped in the Southern Hemisphere", scientists areforced to issue queries like \Retrieve all temperaturerecords produced between January 1, 1980 and De-cember 25, 1991".We have developed a prototype system calledQUEST to provide content-based query access to mas-sive datasets. To demonstrate the utility of spatial-temporal features as high-level indexes into terabytedatasets, we presented an algorithm for extracting cy-clone tracks from sea level pressure data generated bya AGCM. A user scenario was presented to illustratethe interaction between a scientist and QUEST be-ginning with a query to select a subset of cyclones,and ending with the visualization of sea level pressure�elds associated with the selected cyclone.Much work remains to be performed to extend thefunctionality of QUEST. Work is underway to em-ploy massively parallel processors such as the IntelParagon, to extract spatio-temporal patterns from ex-isting geoscience datasets, and to extract these fea-tures on-line as the model is executing. On-line ex-traction of features also provides the ability to com-putationally steer the model's execution in the eventthat desired features are not being produced by the
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Figure 8: QUEST query hit browser.

Figure 9: QUEST visualization manager plot of a selected cyclone track.



Figure 6: QUEST GUI for selecting a feature query icon.

Figure 7: QUEST panel for specifying the spatial, temporal, and magnitude extents for desired cyclones.
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Figure 5: QUEST system architecture.to request additional information (via QUEST or theinformation repository).The graphical user interface (GUI) provides theability to query scienti�c data and extracted featuresin the information repository. The GUI was builtusing the Tool Command Language (Tcl) and X11Toolkit (Tk) developed at UC Berkeley. The GUIconstruction is highly interactive since GUI's schemais stored in the information repository.5 Content-based access to datasets us-ing extracted featuresOnce features have been extracted from a largedataset, they can used as high-level indexes into thedataset. This ability is very appealing when datasetssizes are in the gigabyte or terabyte range, and theonly access method is simply based on spatial andtemporal coordinates.To illustrate the use of the extracted features, con-sider the QUEST GUI panel shown in Figure 6. Theicons represent the various high-level features that areavailable as indexes into the dataset being investi-gated. The �rst two icons are for querying the sys-tem about all cyclones or cyclones that existed overa given spatio-temporal interval, while the latter twoprovide similar support for anticyclones. Suppose that

the user wants to query the system to locate cyclonesof interest (this is the �rst step to accessing the datasubset to be analyzed and/or visualized). The userquery form shown in Figure 7 is automatically gener-ated by QUEST when the second icon is clicked.The scientist can specify the desired spatial coor-dinates (extent), the temporal interval, and the min-imum and maximum SLP values for cyclone minima,in an attempt to limit the database search. QUESTtransforms this graphical query into its internal querylanguage and communicates with the LDL++ querymanager to process the query. The query managerthen interfaces with the repositories (e.g., Postgres,Sybase) to retrieve the requested information. Fig-ure 8 presents the \hits" (i.e., the cyclone tracks thatmatch the user-speci�ed criteria). The scientist cansort the hits, and select the subset of hits to be fur-ther investigated (e.g., plotted, etc.).To plot a set of cyclone tracks, a scientist simplyclicks on the plot icon. QUEST communicates withthe repositories to retrieve the tracks, and passes theinformation along to the visualization manager, whichin turn produces the plot (see Figure 9). A scientistcan then interact with the plot window to further se-lect a subset of tracks, and can visualize animations ofmodel variables during the life of the selected cyclonetracks (see Figure 10).



(a)
(b)Figure 4: Plots of sea level pressure �elds overlaid with cyclone track (extracted minimas are represented byasterisks): (a) Start of a particular cyclone track on January 3, 1981, 1200GMT; (b) End of a the same cyclonetrack on January 6, 1981, 0GMT.



considered to be a part of the same cyclone track ifthey satisfy one of the following two criteria:� The di�erence between the spatial coordinatesof mint and mint+1 is less than within a 1/2grid cell (in our study, 2:5� in East-West di-rection and less than 2:0� in North-South di-rection). Formally, the criterion can be ex-pressed as distx(mint;mint+1) < 2:5� anddisty(mint;mint+1) < 2:0�.� The location of the two minima is consistent withthe direction and velocity of the wind at the 700millibar level (based on the assumption that windand cyclone tend to move in the same direction).In other words, the mint+1 is located in the direc-tion indicated by the 700mb wind variable sam-pled at the location ofmint. Given that the direc-tion is correct, the distance between the minimais less than the distance that could be traveledgiven the wind velocity. Typically, the maximumdistance that could be traveled by a cyclone be-tween t and t+ 1 was 1 grid cell.A �nal criterion on a cyclone track is that it mustlast for at least 3 simulated days. This criteriongreatly reduces the number of cyclone tracks detectedand stored in the database. To demonstrate the per-formance of the tracking algorithm, consider the SLP�elds shown in Figure 2. The two SLP �elds corre-spond to an elapsed time of 3 simulated days. Figure 4presents an example cyclone track that was extractedduring that period. The cyclone began on Jan 3, 1981at 1200GMT at the minima marked by the asterisk(see Figure 4(a)). The entire track has been overlaidto indicate the course taken during the cyclones life.Figure 4(b) presents the SLP �eld and the locationwhere the cyclone track ended.To test our prototype system, we have ten yearsworth of selected �elds from GCM model data (ap-proximately 2 Gbytes). The extraction of 3686 cyclonetracks required the analysis of 264 Mbytes (SLP �eldsplus wind velocities at 700 millibars), and took aboutan hour per model year on a Sun Sparc 10/30. Weare currently implementing a parallel version of thethe algorithm on an 64 node Intel Paragon. Prelimi-nary results suggest that we can anticipate to processa model year on the order of minutes.The algorithm described above is similar to oth-ers proposed in the literature. Le Treut and Kanaly[17] extracted minima by computing a mean over acell's closet 20 grid points and accepting those pointswhere the di�erence between the SLP value at the

point was 4 millibars lower than the mean. A cyclonetrack is formed by comparing minima in a given testarea (20� � 25�) with minima that existed during theprevious time step. If more than one minima existsin the test area, wind information at 500 millibars isused to select the cyclone that is heading in the di-rection indicated by the wind information. A cyclonetrack is kept if it lasts for at least 3 time steps. Mur-ray and Simmonds' [11] tracking algorithm computesestimates of the new location of a mint, by calculatingthe probability of associations between the predictedand realized positions for each minima, and selects thematching of these associations with the highest overallprobability (i.e., credit assignment).4 System architectureFigure 5 presents our environment for scienti�cdata analysis, knowledge discovery, and visualization.The QUEST information system comprises a graphicaluser interface, a query manager, visualization man-ager, and an information repository. It should benoted that these components run as separate processesand communicate with each other using the protocolsappearing on the communication links.The query manager maintains a uni�ed schema ofthe data stored in distributed, heterogeneous repos-itories (Postgres [14], Sybase [16], QUILT [13]), andprovides QUEST with a common query language (ap-plication interface) to the underlying repositories. Weimplemented our query manager using LDL++, adeductive DBMS developed at MCC [3]. LDL++provides a logic-based query language, complex datatypes (e.g., sets, lists, composite types), and an in-terpretive environment for rapid prototyping. We ex-tended LDL++ to support spatial and temporal datatypes (along with operators).Our initial information repository was built us-ing Postgres, an extensible relational DBMS. Postgresprovides inheritance, abstract datatypes, user-de�nedfunctions, and large object (blob) support. We de-�ned classes for our spatial-temporal objects (such ascyclone tracks) as well as objects such as model datadatasets, observation datasets and experiments.The visualization manager supports static plotting(2D and 3D graphs) of data, analysis of data (e.g.,statistical, contours), and animation of datasets. Wechose to implement our visualization manager on topof IDL. We augmented IDL with a communicationmodule and support for maintaining object ids of databeing manipulated. These object ids are used by IDL



(a)
(b)Figure 2: Plots of sea level pressure �elds (SLP) overlaid with extracted minima (asterisks): (a) SLP �eld forJanuary 3, 1981, 1200GMT; (b) SLP �eld for January 6, 1981, 0GMT.



(a)
(b)Figure 1: Contour plots of sea level pressure (SLP) �elds overlaid with extracted minima (asterisks): (a) SLP�eld for January 3, 1981, 1200GMT; (b) SLP �eld for January 6, 1981, 0GMT.



The prognostic variables of the AGCM are hori-zontal velocities, potential temperature, water vaporand ozone mixing ratio, surface pressure, ground tem-perature, and depth of the planetary boundary layer.There are also diagnostic variables such as vertical ve-locities, precipitation, cloudiness, surface uxes of sen-sible and latent heat, surface wind stress and radiativeheating. Typically, the model's output is written outto the database at 12-hour (simulation time) intervals;however, this frequency can be modi�ed depending onstorage capacity of the database. the model can berun with di�erent spatial resolutions (grid sizes) andtemporal resolution (output frequency). At the low-est spatial resolution (4� � 5�, 9 levels) with 12 houroutput interval, the AGCM produces approximately 5Gbytes of data per simulated year, while a 100-yearsimulation of a AGCM with a 1� � 1:25�, 57 levels)generates approximately 30 terabytes of output.3 Extracting spatio-temporal featuresWe are interested in capturing features (usuallyspatial) and tracking them over time. Phenomena sim-ulated by the AGCM include extratropical cyclones,blocking events, hurricanes and fronts. In this paperwe focus on the design of an algorithm for the detec-tion and monitoring of cyclone tracks. In a weathermap, the signature of an extratropical cyclone is a setof closed contours surrounding a minimum in sea levelpressure (SLP). The global distribution of sea levelpressure is provided by the AGCM at regular time in-tervals. As time advances, a cyclone may translate inspace along a trajectory also called a \cyclone track".To help visualize the location of cyclone centers,Figure 1 presents contour plots overlaid with extractedlocal minima (asterisks) for two SLP �elds. It shouldbe noted that not all of the extracted minima shownin Figures 1(a-b) are true cyclone centers and conse-quently a part of a cyclone track. Figure 2 presentsplots of the SLP �elds overlaid with their respectiveminima.Given a time sequence of SLP �elds (with a partic-ular temporal separation), we developed an algorithmto extract cyclone tracks (see Figure 3). This algo-rithm consists of three steps: 1) minima extraction,2) minima location re�nement, and 3) assignment ofminima to tracks.In the �rst step, local minima in the SLP data �eldare located. A local minima exists at (x; y) if the cor-responding SLP value satis�es the following criteria:� SLP(x,y) is less than each one of the values for

for each framecompute all minima;for each minimumfor all active tracksif the minimum satis�es closeness criteriainclude it on that track;endifendforif the minimumwas not added to any trackcreate a new track and addthe minimum to itendifendforfor all tracks that didn't get a new minimumif track is greater than lengthmin (3 days)save it as valid trackelsediscard trackendifendforendforFigure 3: Algorithm for extracting cyclone tracks.grid points in the immediate neighborhood of thepoint in question (i.e., 8-neighbor).� SLP(x,y) is less than the average value computedusing a 5x5 neighborhood centered at (x; y) (butnot including the center point). The di�erencethreshold was set to 5.5 millibars. This criteriapermits the detection of large, shallow low pres-sure areas.Since the spatial resolution of the AGCM out-put that we are using in this study is rather coarse(4� � 5�), the location of extracted minima may notvary smoothly with time, further complicating cyclonetracking. To obtain a more continuous variation in thelocations of pressure minima, we used a method devel-oped by Murray and Simmonds [11]. In this method,the SLP �eld is �tted by a bicubic spline function.Gradients in the interpolated surface are then used tobetter locate the centers of the minima extracted inthe �rst step.Given an SLP �eld along with its interpolated min-ima, the �nal step in the algorithm is to try to as-sociate each minima in the frame at time t + 1 withcyclone tracks that have been monitored during theprevious time steps (: : : , t� 2, t� 1, t). Two minimacomputed at successive frames (mint and mint+1) are



repository of contextual and semantic information.c) The nature of exploratory data analysis for sci-enti�c hypothesis testing or phenomenon detection isbasically an iterative, successive-re�nement process.The scientist initially applies a coarse model on thedata, and then uses the outcome of this �rst experi-ment to re�ne his/her model and methods; then theprocess is repeated until the hypothesis is dropped orit is re�ned into one that is fully corroborated by thecollected data. For such investigations to be practical,the scientist must have at hand a powerful system thatsupports: (1) the easy formulation of powerful queriesand discriminant decision rules against the database;(2) a natural representation of the relationships of thescienti�c domain of interest (e.g, in natural domainsof the space and time, but, possibly, in the frequencydomain as well); and (3) e�cient execution of thesequeries without requiring the scientist to become cog-nizant of the storage structures and processing strate-gies involved.d) Once methods for detecting patterns of interesthave been established, the system can search for thesepatterns as new data is added from sensors and satel-lites, and through a trigger-based activation mecha-nism alerts interested scientists. Furthermore, sincethe system automatically records as metadata whichdatasets, algorithms and parameters were used in theexperiments, the database becomes the companionlogbook of each scientist. As scienti�c theories arerevised and improved, the system will help scientiststo revise results obtained under old assumptions (agiant make �le).Spatio-temporal analysis of dynamic events such asthe motion of rigid or nonrigid bodies contributes tothe image (data) understanding tasks by disambiguat-ing scene information, whenever the observer and/orobjects in the scene are moving. Information that canbe extracted frommotion cannot be obtained from anyother attributes of the image. Image databases mustsolve the problem of querying dynamic processes ifthey are to be useful in retrieving information encodedin, for example, all sequences of \data" frames withcircular cloud pattern that resembles a hurricane. Atissue is how users can utilize distributed image motiondatabases, both in storing new sequences, retrievingexisting ones, and comparing sequences for situationassessment purposes. We are interested in systemsthat can respond to queries of the type, \Show memotion sequences that include a hurricane (cloud for-mation or temperature gradient patterns) like the onein this sensory data".

Content based access to image databases has be-come an active area of research in recent years, but isstill in its infancy. A sampling of recent work can befound in [7, 2]. The QUBIC project at IBM [12] is anexample system that illustrates the state-of-the-art inimage retrieval by content, while examples of work inthe area of geoscience databases include VIMSYS [4]and Sequoia 2000 [5].As part of a NASA HPCC Grand Challenge ef-fort [Mun92], we have developed a prototype sys-tem called QUEST to provide content-based queryaccess to massive datasets used in geophysical ap-plications. QUEST employs workstations as well asteraFLOP computers to produce spatio-temporal fea-tures that are used as high-level indexes into terabytedatasets. Our �rst application area is the output ofglobal change climate models and in the initial proto-type, the �rst features extracted for content-based ac-cess are model-simulated trajectories of cyclones andanticyclones. This paper presents an algorithm forextracting cyclone trajectories from simulations per-formed with a General Circulation Model of the at-mosphere (the UCLA AGCM), and illustrates the useof cyclone indexes to access (via QUEST) subsets ofGCM data for further analysis and visualization.2 Geophysical datasetsGeophysical datasets are generally produced by ei-ther observational systems (e.g., satellites) or models.Earth science phenomena, modeled or observed, typ-ically contain features which can be extracted fromtheir datasets. These spatio-temporal phenomena andtheir derived features can be managed, manipulated,and indexed by applications according to their spatialand temporal properties.We chose the output of AGCMs as our applicationdomain for two principal reasons: (1) it includes achallenging set of spatial-temporal patterns (e.g., cy-clones, hurricanes, fronts, and blocking events); and(2) it is generally free of incomplete, noisy, or con-tradicting information. Hence it serves as an idealtestbed for validating our prototype environment.The speci�c data set used in this study was gener-ated by the UCLA AGCM [1, 8, 9]. The horizontalstructure of the model is based on grid cells of variousresolutions; we are using a grid size of 5� longitude and4� of latitude. The vertical component of the model isrepresented by a series of layers between the Earth'ssurface and a prescribed pressure level in the uppertroposphere or stratosphere.



Extracting Spatio-Temporal Patterns from Geoscience DatasetsE. Mesrobian, R. R. Muntz C. R. Mechoso P. StolorzJ. R. Santos, and E. C. Shek J. D. Farrara Jet Propulsion LabUCLA Computer Science Dept. UCLA Atmospheric Sciences Dept. CalTechAbstractA major challenge facing geophysical science to-day is the unavailability of high-level analysis toolswith which to study the massive amount of data pro-duced by sensors or long simulations of climate mod-els. We have developed a prototype system calledQUEST to provide content-based access to massivedatasets. QUEST employs workstations as well asteraFLOP computers to analyze geoscience data toproduce spatial-temporal features that can be used ashigh-level indexes. Our �rst application area is globalchange climate modeling. In the initial prototype, the�rst features extracted are cyclones trajectories fromthe output of multi-year climate simulations producedby a General Circulation Model. We present an al-gorithm for cyclone extraction and illustrate the useof cyclone indexes to access subsets of GCM data forfurther analysis and visualization.1 IntroductionA critical challenge facing geophysical science to-day is the unavailability of high-level analysis toolswith which to study the massive amount of informa-tion captured by sensors onboard orbiting satellites orproduced by climate models. To address this chal-lenge, we must develop a new generation of systemsfor scienti�c data management capable of coping with� the highly complex multimodal queries and intel-ligent retrievals required for scienti�c investiga-tions and knowledge discovery, and� the staggering computational demands posed bythe extraordinary size of the data set and thecomplexity of the tasks involved.Both facets of this challenge are present in queriesinvolving detection of changes and ow structures thatare common in atmospheric and geophysical science.

Thus, the recognition of phenomena such as mon-soons, extratropical cyclones, cold and warm fronts,ocean currents and ocean eddies is rich both in datacomplexity (large multidimensional data sets) and log-ical complexity (di�culty of detecting and trackingpatterns evolving in a multidimensional space). Theseapplications must be supported by (1) large parallelsystems capable of providing fast access to very largedata sets on mass storage and (2) scienti�c informa-tion management systems capable of taming the com-plexities of the logical task involved. In fact, scien-ti�c data management systems capable of supportingsuccessful geophysical investigations on data productsgenerated by models or by Earth-Observation Systems(EOS) must address several major issues:a) There is a very wide gap between the high-level conceptual abstractions with which scientists op-erate (involving, e.g., trends, evolution and correla-tions) and the very low level at which data is collected(i.e., vectors of noisy data samples). Therefore, inter-mediate levels of derived data products are used toproduce a dataset more conducive to scienti�c inves-tigations (e.g., through enhancements and cleaning).Thus, there is a need for a vertically integrated archi-tecture which manages the mapping between di�erentproduct levels, to ensure complete relatability betweenlevels (e.g., via metalevel data) and optimization of thehigh-level queries and goals of interest.b) Previous experience with recognition of geophys-ical phenomena from observational data indicates thatthis cannot be performed by a mere (bottom-up) en-hancement of the observational data followed by therecognition of the syntactic or geometric patterns ofinterest: successful recognition also requires extensiveuse of contextual data whereby a great deal of seman-tic information (e.g. about regions, time, and plausi-bility) is passed down to the lower layer of processingalong with semantic expectations about the goals be-ing sought. This suggests that successful explorationshould be performed in a vertically integrated sys-tem, where data-driven and goal-directed processingare combined, and full advantage is taken of a rich


